Mediterranean Diet: A Nutritional Suggestion for Long Covid Management Strategies – A Literature Review
Main Article Content
Abstract
Long COVID (LC) refers to continuing conditions following acute COVID-19 infection, lasting for weeks to months. It affects a wide range of people's lives, including physical, physiological, and social-economic aspects. Hence, leads to lowering quality of life and other future health challenges worldwide. Health problems following the acute phase of COVID-19 may persist or appear for days to months after the acute infection is resolved. The phenotype of long COVID-19 commonly manifests as a collection of symptoms such as muscle weakness, neuro-cognitive alteration, and respiratory disturbances. Mechanisms underpinning long COVID-19 are still not fully understood. It is hypothesized that inflammation plays a crucial role in LC development through several complex pathways. Recently, effective treatments for long COVID-19 have not been established. Its management depends on the patient's symptoms and needs. Nutritional modulation and physical rehabilitation are advised for long-COVID-19 improvement and increased quality of life. The Mediterranean diet (Med-diet) has been acknowledged for its impact on health through its antioxidant and anti-inflammatory effects. Bioactive compounds in Med-diet have been widely studied to reduce oxidative stress and inflammation in cells. Adherence to Med-diet food intake is linked to a lower incidence of obesity, cancer, cardiovascular disease, and metabolic disease. Therefore, the potential effect of Med-diet as a nutritional approach for long-COVID-19 treatment and prevention will be summarized.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Centers for Disease Control and Prevention. Long COVID or Post-COVID Conditions [Internet]. 2023 [cited 2023 Nov 13]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html
II. Dillen H, Bekkering G, Gijsbers S, Vande Weygaerde Y, Van Herck M, Haesevoets S, et al. Clinical effectiveness of rehabilitation in ambulatory care for patients with persisting symptoms after COVID-19: a systematic review. BMC Infect Dis. 2023 Jun 21;23(1):419.
III. Romanet C, Wormser J, Fels A, Lucas P, Prudat C, Sacco E, et al. Effectiveness of exercise training on the dyspnoea of individuals with long COVID: A randomised controlled multicentre trial. Ann Phys Rehabil Med. 2023 Jun;66(5):101765.
IV. Rishor-Olney CR, Hinson MR. Mediterranean Diet. 2023.
V. Castro-Quezada I, Román-Viñas B, Serra-Majem L. The Mediterranean Diet and Nutritional Adequacy: A Review. Nutrients. 2014 Jan 3;6(1):231–48.
VI. Soriano JB, Murthy S, Marshall JC, Relan P, Diaz J V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022 Apr;22(4):e102–7.
VII. Ding Q, Zhao H. Long-term effects of SARS-CoV-2 infection on human brain and memory. Cell Death Discov. 2023 Jun 29;9(1):196.
VIII. Dierckx W, De Backer W, Ides K, De Meyer Y, Lauwers E, Franck E, et al. Unraveling pathophysiologic mechanisms contributing to symptoms in patients with post‐acute sequelae of COVID ‐19 ( PASC ): A retrospective study. Physiol Rep. 2023 Jun 21;11(12).
IX. Sudre CH, Murray B, Varsavsky T, Graham MS, Penfold RS, Bowyer RC, et al. Attributes and predictors of long COVID. Nat Med. 2021 Apr 10;27(4):626–31.
X. Ha EK, Kim JH, Han MY. Long COVID in children and adolescents: prevalence, clinical manifestations, and management strategies. Clin Exp Pediatr. 2023 Nov 15;66(11):465–74.
XI. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. RETRACTED: 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. The Lancet. 2021 Jan;397(10270):220–32.
XII. Romero-Rodríguez E, Vélez-Santamaría R, Pérula-de-Torres LÁ, González-Lama J, Castro-Jiménez RÁ, Simón-Vicente L, et al. Clinical and Epidemiological Profiles of Primary Healthcare Professionals with COVID-19 Infection and Long COVID: An Observational Study. Healthcare. 2023 Jun 7;11(12):1677.
XIII. Steinmetz A, Gross S, Lehnert K, Lücker P, Friedrich N, Nauck M, et al. Longitudinal Clinical Features of Post-COVID-19 Patients—Symptoms, Fatigue and Physical Function at 3- and 6-Month Follow-Up. J Clin Med. 2023 Jun 10;12(12):3966.
XIV. Nordvig AS, Rajan M, Lau JD, Kingery JR, Mahmud M, Chiang GC, et al. Brain fog in long COVID limits function and health status, independently of hospital severity and preexisting conditions. Front Neurol. 2023 May 11;14.
XV. Lanz-Luces JR, Aceituno H, Quiroz-Bravo F, Rodríguez-Flores F, Osores-Espinoza M, Rigaud D, et al. Long-lasting brain fog is related with severity clusters of symptoms in COVID-19 patients. Rev Med Chil. 2022 Nov;150(11):1484–92.
XVI. De Juana C, Herrera S, Ponce S, Calvache S, Dahmazi L, Vitale R, et al. Health-related quality of life and radiological and functional lung changes of patients with COVID-19 Pneumonia 3 and 10 months after discharge. BMC Pulm Med. 2023 Jun 27;23(1):231.
XVII. Baroni C, Potito J, Perticone ME, Orausclio P, Luna CM. How Does Long-COVID Impact Prognosis and the Long-Term Sequelae? Viruses. 2023 May 15;15(5):1173.
XVIII. Román-Montes CM, Flores-Soto Y, Guaracha-Basañez GA, Tamez-Torres KM, Sifuentes-Osornio J, González-Lara MaF, et al. Post-COVID-19 syndrome and quality of life impairment in severe COVID-19 Mexican patients. Front Public Health. 2023 May 15;11.
XIX. Babicki M, Kapusta J, Pieniawska-Śmiech K, Kałuzińska-Kołat Ż, Kołat D, Mastalerz-Migas A, et al. Do COVID-19 Vaccinations Affect the Most Common Post-COVID Symptoms? Initial Data from the STOP-COVID Register–12-Month Follow-Up. Viruses. 2023 Jun 13;15(6):1370.
XX. Mahmoodi Z, Bahrami G, Shahrestanaki E, Seddighi H, Ghavidel N. Clinical and Socio-Demographic Variables Associated With Long COVID-19: A Cross-Sectional Study. Clin Nurs Res. 2023 Jul 2;32(6):947–53.
XXI. Kisiel MA, Lee S, Malmquist S, Rykatkin O, Holgert S, Janols H, et al. Clustering Analysis Identified Three Long COVID Phenotypes and Their Association with General Health Status and Working Ability. J Clin Med. 2023 May 23;12(11):3617.
XXII. Wong AW, Tran KC, Binka M, Janjua NZ, Sbihi H, Russell JA, et al. Use of latent class analysis and patient reported outcome measures to identify distinct long COVID phenotypes: A longitudinal cohort study. PLoS One. 2023 Jun 2;18(6):e0286588.
XXIII. Buonsenso D, Martino L, Morello R, Mariani F, Fearnley K, Valentini P. Viral persistence in children infected with SARS-CoV-2: current evidence and future research strategies. Lancet Microbe [Internet]. 2023 Sep;4(9):e745–56. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666524723001155
XXIV. Kamanzi P, Mulundu G, Mutale K, Mumba C, Ngalamika O. HIV and inflammatory markers are associated with persistent COVID‐19 symptoms. Immun Inflamm Dis. 2023 May 8;11(5).
XXV. Scurati R, Papini N, Giussani P, Alberti G, Tringali C. The Challenge of Long COVID-19 Management: From Disease Molecular Hallmarks to the Proposal of Exercise as Therapy. Int J Mol Sci. 2022 Oct 14;23(20):12311.
XXVI. Perumal R, Shunmugam L, Naidoo K, Wilkins D, Garzino-Demo A, Brechot C, et al. Biological mechanisms underpinning the development of long COVID. iScience. 2023 Jun;26(6):106935.
XXVII. Zadeh FH, Wilson DR, Agrawal DK. Long COVID: Complications, Underlying Mechanisms, and Treatment Strategies. Archives of microbiology & immunology. 2023;7(2):36–61.
XXVIII. Cao X, Nguyen V, Tsai J, Gao C, Tian Y, Zhang Y, et al. The SARS-CoV-2 spike protein induces long-term transcriptional perturbations of mitochondrial metabolic genes, causes cardiac fibrosis, and reduces myocardial contractile in obese mice. Mol Metab. 2023 Aug;74:101756.
XXIX. Stein SR, Ramelli SC, Grazioli A, Chung JY, Singh M, Yinda CK, et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022 Dec 22;612(7941):758–63.
XXX. Chen B, Julg B, Mohandas S, Bradfute SB. Viral persistence, reactivation, and mechanisms of long COVID. Elife. 2023 May 4;12.
XXXI. Tejerina F, Catalan P, Rodriguez-Grande C, Adan J, Rodriguez-Gonzalez C, Muñoz P, et al. Post-COVID-19 syndrome. SARS-CoV-2 RNA detection in plasma, stool, and urine in patients with persistent symptoms after COVID-19. BMC Infect Dis. 2022 Dec 3;22(1):211.
XXXII. Stevent Sumantri, d Iris Rengganis. Immunological dysfunction and mast cell activation syndrome in long COVID. Asia Pac Allergy. 2023 Mar 30;13(1):50–3.
XXXIII. Lafon-Hughes L. Towards Understanding Long COVID: SARS-CoV-2 Strikes the Host Cell Nucleus. Pathogens. 2023 Jun 6;12(6):806.
XXXIV. Su Y, Yuan D, Chen DG, Ng RH, Wang K, Choi J, et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022 Mar;185(5):881-895.e20.
XXXV. Jones C, Gwenin C. Cortisol level dysregulation and its prevalence—Is it nature’s alarm clock? Physiol Rep. 2021 Jan 19;8(24).
XXXVI. Morey JN, Boggero IA, Scott AB, Segerstrom SC. Current directions in stress and human immune function. Curr Opin Psychol. 2015 Oct;5:13–7.
XXXVII. Talla A, Vasaikar S V., Szeto GL, Lemos MP, Czartoski JL, MacMillan H, et al. Persistent serum protein signatures define an inflammatory subcategory of long COVID. Nat Commun. 2023 Jun 9;14(1):3417.
XXXVIII. Iosef C, Knauer MJ, Nicholson M, Van Nynatten LR, Cepinskas G, Draghici S, et al. Plasma proteome of Long-COVID patients indicates HIF-mediated vasculo-proliferative disease with impact on brain and heart function. J Transl Med. 2023 Jun 10;21(1):377.
XXXIX. Visvabharathy L, Hanson BA, Orban ZS, Lim PH, Palacio NM, Jimenez M, et al. Neuro-PASC is characterized by enhanced CD4+ and diminished CD8+ T cell responses to SARS-CoV-2 Nucleocapsid protein. Front Immunol. 2023 May 29;14.
XL. Paniskaki K, Konik MJ, Anft M, Heidecke H, Meister TL, Pfaender S, et al. Low avidity circulating SARS-CoV-2 reactive CD8+ T cells with proinflammatory TEMRA phenotype are associated with post-acute sequelae of COVID-19. Front Microbiol. 2023 Jun 2;14.
XLI. Komaroff AL, Lipkin WI. ME/CFS and Long COVID share similar symptoms and biological abnormalities: road map to the literature. Front Med (Lausanne). 2023 Jun 2;10.
XLII. Calder PC, Ortega EF, Meydani SN, Adkins Y, Stephensen CB, Thompson B, et al. Nutrition, Immunosenescence, and Infectious Disease: An Overview of the Scientific Evidence on Micronutrients and on Modulation of the Gut Microbiota. Advances in Nutrition. 2022 Sep;13(5):S1–26.
XLIII. Opsteen S, Files JK, Fram T, Erdmann N. The role of immune activation and antigen persistence in acute and long COVID. Journal of Investigative Medicine. 2023 Jun 6;71(5):545–62.
XLIV. Ancona G, Alagna L, Alteri C, Palomba E, Tonizzo A, Pastena A, et al. Gut and airway microbiota dysbiosis and their role in COVID-19 and long-COVID. Front Immunol. 2023 Mar 8;14.
XLV. Bertani B, Ruiz N. Function and Biogenesis of Lipopolysaccharides. EcoSal Plus. 2018 Feb 8;8(1).
XLVI. Zhou B, Pang X, Wu J, Liu T, Wang B, Cao H. Gut microbiota in COVID-19: new insights from inside. Gut Microbes. 2023 Dec 31;15(1).
XLVII. Dominguez LJ, Di Bella G, Veronese N, Barbagallo M. Impact of Mediterranean Diet on Chronic Non-Communicable Diseases and Longevity. Nutrients. 2021 Jun 12;13(6):2028.
XLVIII. Cannataro R, Fazio A, La Torre C, Caroleo MC, Cione E. Polyphenols in the Mediterranean Diet: From Dietary Sources to microRNA Modulation. Antioxidants. 2021 Feb 23;10(2):328.
XLIX. Finicelli M, Di Salle A, Galderisi U, Peluso G. The Mediterranean Diet: An Update of the Clinical Trials. Nutrients. 2022 Jul 19;14(14):2956.
L. Tuttolomondo A, Simonetta I, Daidone M, Mogavero A, Ortello A, Pinto A. Metabolic and Vascular Effect of the Mediterranean Diet. Int J Mol Sci. 2019 Sep 23;20(19):4716.
LI. Mavropoulos A. On the Role of Salt in Immunoregulation and Autoimmunity. Mediterr J Rheumatol. 2021;31(4):3.
LII. Barquiel B, Calvo M, Moreno-Domínguez Ó, Martínez-Sánchez N, Muner M, Bedate MF, et al. The PREDG study: A randomised controlled trial testing whether an educational intervention can prevent gestational weight gain in women with obesity. Clin Nutr ESPEN. 2023 Oct;57:266–71.
LIII. Shoer S, Shilo S, Godneva A, Ben-Yacov O, Rein M, Wolf BC, et al. Impact of dietary interventions on pre-diabetic oral and gut microbiome, metabolites and cytokines. Nat Commun. 2023 Sep 4;14(1):5384.
LIV. Scoditti E, Tumolo MR, Garbarino S. Mediterranean Diet on Sleep: A Health Alliance. Nutrients. 2022 Jul 21;14(14):2998.
LV. Sadeghi O, Eshaghian N, Benisi-Kohansal S, Azadbakht L, Esmaillzadeh A. A case–control study on the association between adherence to a Mediterranean-style diet and breast cancer. Front Nutr. 2023 Jul 18;10.
LVI. Podadera-Herreros A, Alcala-Diaz JF, Gutierrez-Mariscal FM, Jimenez-Torres J, Cruz-Ares S de la, Arenas-de Larriva AP, et al. Long-term consumption of a mediterranean diet or a low-fat diet on kidney function in coronary heart disease patients: The CORDIOPREV randomized controlled trial. Clinical Nutrition. 2022 Feb;41(2):552–9.
LVII. Andreescu M. Epigenetic Alterations That Are the Backbone of Immune Evasion in T-cell Malignancies. Cureus. 2024 Jan 4;
LVIII. El-Sayed A, Aleya L, Kamel M. Microbiota and epigenetics: promising therapeutic approaches? Environmental Science and Pollution Research. 2021 Sep 28;28(36):49343–61.
LIX. Ramirez-Sanchez I, Taub PR, Ciaraldi TP, Nogueira L, Coe T, Perkins G, et al. (−)-Epicatechin rich cocoa mediated modulation of oxidative stress regulators in skeletal muscle of heart failure and type 2 diabetes patients. Int J Cardiol. 2013 Oct;168(4):3982–90.
LX. Al-Aubaidy HA, Dayan A, Deseo MA, Itsiopoulos C, Jamil D, Hadi NR, et al. Twelve-Week Mediterranean Diet Intervention Increases Citrus Bioflavonoid Levels and Reduces Inflammation in People with Type 2 Diabetes Mellitus. Nutrients. 2021 Mar 30;13(4):1133.
LXI. Munguia L, Rubio-Gayosso I, Ramirez-Sanchez I, Ortiz A, Hidalgo I, Gonzalez C, et al. High Flavonoid Cocoa Supplement Ameliorates Plasma Oxidative Stress and Inflammation Levels While Improving Mobility and Quality of Life in Older Subjects: A Double-Blind Randomized Clinical Trial. The Journals of Gerontology: Series A. 2019 Sep 15;74(10):1620–7.
LXII. Emamat H, Zahedmehr A, Asadian S, Nasrollahzadeh J. The effect of barberry (Berberis integerrima) on lipid profile and systemic inflammation in subjects with cardiovascular risk factors: a randomized controlled trial. BMC Complement Med Ther. 2022 Dec 7;22(1):59.
LXIII. Lalani S, Poh CL. Flavonoids as Antiviral Agents for Enterovirus A71 (EV-A71). Viruses. 2020 Feb 6;12(2):184.
LXIV. Del Bo’ C, Bernardi S, Cherubini A, Porrini M, Gargari G, Hidalgo-Liberona N, et al. A polyphenol-rich dietary pattern improves intestinal permeability, evaluated as serum zonulin levels, in older subjects: The MaPLE randomised controlled trial. Clinical Nutrition. 2021 May;40(5):3006–18.
LXV. Park M, Choi J, Lee HJ. Flavonoid-Rich Orange Juice Intake and Altered Gut Microbiome in Young Adults with Depressive Symptom: A Randomized Controlled Study. Nutrients. 2020 Jun 18;12(6):1815.
LXVI. Barrea L, Muscogiuri G, Frias-Toral E, Laudisio D, Pugliese G, Castellucci B, et al. Nutrition and immune system: from the Mediterranean diet to dietary supplementary through the microbiota. Crit Rev Food Sci Nutr. 2021 Oct 11;61(18):3066–90.
LXVII. Tsigalou C, Konstantinidis T, Paraschaki A, Stavropoulou E, Voidarou C, Bezirtzoglou E. Mediterranean Diet as a Tool to Combat Inflammation and Chronic Diseases. An Overview. Biomedicines. 2020 Jul 8;8(7):201.
LXVIII. Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC. Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front Immunol. 2019 May 22;10.
LXIX. Dharmalingam K, Birdi A, Tomo S, Sreenivasulu K, Charan J, Yadav D, et al. Trace Elements as Immunoregulators in SARS-CoV-2 and Other Viral Infections. Indian Journal of Clinical Biochemistry. 2021 Oct 12;36(4):416–26.
LXX. Torres-Peña JD, Rangel-Zuñiga OA, Alcala-Diaz JF, Lopez-Miranda J, Delgado-Lista J. Mediterranean Diet and Endothelial Function: A Review of its Effects at Different Vascular Bed Levels. Nutrients. 2020 Jul 24;12(8):2212.
LXXI. Johns I, Frost G, Dornhorst A. Increasing the proportion of plasma MUFA, as a result of dietary intervention, is associated with a modest improvement in insulin sensitivity. J Nutr Sci. 2020 Jan 29;9:e6.
LXXII. Sellem L, Eichelmann F, Jackson KG, Wittenbecher C, Schulze MB, Lovegrove JA. Replacement of dietary saturated with unsaturated fatty acids is associated with beneficial effects on lipidome metabolites: a secondary analysis of a randomized trial. Am J Clin Nutr. 2023 Jun;117(6):1248–61.
LXXIII. Michielsen CCJR, Hangelbroek RWJ, Feskens EJM, Afman LA. Disentangling the Effects of Monounsaturated Fatty Acids from Other Components of a Mediterranean Diet on Serum Metabolite Profiles: A Randomized Fully Controlled Dietary Intervention in Healthy Subjects at Risk of the Metabolic Syndrome. Mol Nutr Food Res. 2019 May 21;63(9).
LXXIV. Wernicke C, Pohrt A, Pletsch-Borba L, Apostolopoulou K, Hornemann S, Meyer N, et al. Effect of unsaturated fat and protein intake on liver fat in people at risk of unhealthy aging: 1-year results of a randomized controlled trial. Am J Clin Nutr. 2023 Apr;117(4):785–93.
LXXV. Barrea L, Grant WB, Frias-Toral E, Vetrani C, Verde L, de Alteriis G, et al. Dietary Recommendations for Post-COVID-19 Syndrome. Nutrients. 2022 Mar 20;14(6):1305.
LXXVI. Carlini V, Noonan DM, Abdalalem E, Goletti D, Sansone C, Calabrone L, et al. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol. 2023 Jun 8;14.
LXXVII. Barber TM, Kabisch S, Pfeiffer AFH, Weickert MO. The Health Benefits of Dietary Fibre. Nutrients. 2020 Oct 21;12(10):3209.
LXXVIII. García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, et al. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota–Immune System Interplay. Implications for Health and Disease. Nutrients. 2021 Feb 22;13(2):699.
LXXIX. Storz MA. Lifestyle Adjustments in Long-COVID Management: Potential Benefits of Plant-Based Diets. Curr Nutr Rep. 2021 Dec 10;10(4):352–63.
LXXX. McKeown NM, Fahey GC, Slavin J, van der Kamp JW. Fibre intake for optimal health: how can healthcare professionals support people to reach dietary recommendations? BMJ. 2022 Jul 20;e054370.
LXXXI. Badshah SL, Faisal S, Muhammad A, Poulson BG, Emwas AH, Jaremko M. Antiviral activities of flavonoids. Biomedicine & Pharmacotherapy. 2021 Aug;140:111596.
LXXXII. Di Stadio A, D’Ascanio L, Vaira LA, Cantone E, De Luca P, Cingolani C, et al. Ultramicronized Palmitoylethanolamide and Luteolin Supplement Combined with Olfactory Training to Treat Post-COVID-19 Olfactory Impairment: A Multi-Center Double-Blinded Randomized Placebo- Controlled Clinical Trial. Curr Neuropharmacol. 2022 Oct;20(10):2001–12.